
Evaluating random search strategies in three

mammals from distinct feeding guilds

Marie Auger-M�eth�e1*, Andrew E. Derocher1, Craig A. DeMars1, Michael J. Plank2,

Edward A. Codling3 and Mark A. Lewis1,4

1Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; 2School of Mathematics

and Statistics, University of Canterbury, Christchurch Private Bag 4800, New Zealand; 3Department of Mathematical

Sciences, University of Essex, Colchester CO4 3SQ, UK; and 4Department of Mathematical and Statistical Sciences,

Centre for Mathematical Biology, University of Alberta, Edmonton, AB, Canada T6G 2G1

Summary

1. Searching allows animals to find food, mates, shelter and other resources essential for

survival and reproduction and is thus among the most important activities performed by

animals. Theory predicts that animals will use random search strategies in highly variable and

unpredictable environments. Two prominent models have been suggested for animals

searching in sparse and heterogeneous environments: (i) the L�evy walk and (ii) the composite

correlated random walk (CCRW) and its associated area-restricted search behaviour. Until

recently, it was difficult to differentiate between the movement patterns of these two

strategies.

2. Using a new method that assesses whether movement patterns are consistent with these

two strategies and two other common random search strategies, we investigated the move-

ment behaviour of three species inhabiting sparse northern environments: woodland caribou

(Rangifer tarandus caribou), barren-ground grizzly bear (Ursus arctos) and polar bear (Ursus

maritimus). These three species vary widely in their diets and thus allow us to contrast the

movement patterns of animals from different feeding guilds.

3. Our results showed that although more traditional methods would have found evidence

for the L�evy walk for some individuals, a comparison of the L�evy walk to CCRWs showed

stronger support for the latter. While a CCRW was the best model for most individuals, there

was a range of support for its absolute fit. A CCRW was sufficient to explain the movement

of nearly half of herbivorous caribou and a quarter of omnivorous grizzly bears, but was

insufficient to explain the movement of all carnivorous polar bears.

4. Strong evidence for CCRW movement patterns suggests that many individuals may use a

multiphasic movement strategy rather than one-behaviour strategies such as the L�evy walk.

The fact that the best model was insufficient to describe the movement paths of many individ-

uals suggests that some animals living in sparse environments may use strategies that are

more complicated than those described by the standard random search models. Thus, our

results indicate a need to develop movement models that incorporate factors such as the

perceptual and cognitive capacities of animals.

Key-words: animal movement, Arctic, area-concentrated search, Hidden Markov model,

L�evy flight, optimal foraging theory, telemetry

Introduction

Searching is among an animal’s most important activities

as it provides the means to find food, mates, shelter and

other resources essential for survival and reproduction

(Bell 1991). Search efficiency will affect performance and
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fitness, and thus, we expect animals to use movement

strategies that minimize the costs of locating resources

(Zollner & Lima 1999; Conradt et al. 2003). The impor-

tance of this behaviour has driven ecologists to focus on

animals’ search strategies (e.g. Bell 1991; Benhamou 1994;

Viswanathan et al. 1999), and the recent increase in the

availability of movement data has allowed this field to

flourish (e.g. Fauchald & Tveraa 2003; Nevitt, Losekoot

& Weimerskirch 2008; Humphries et al. 2010). One focus

has been to assess whether animals use the search strate-

gies that theory predicts will be optimal in their environ-

ments (e.g. Humphries et al. 2010; Sims et al. 2012).

Using movement data for this assessment remains chal-

lenging because the efficiency of search strategies changes

over environmental gradients and the movement patterns

they produce can be difficult to differentiate (Zollner &

Lima 1999; Bartumeus et al. 2002; Benhamou 2007; Plank

& Codling 2009).

The efficacy of movement strategies is dependent on the

variability and predictability of resource distributions.

When resources are unpredictable in space and time, ran-

dom search strategies are expected to emerge (Mueller &

Fagan 2008). Although animals are known to use percep-

tual cues to detect nearby resources, empiricists have

found support for the use of random search strategies

(e.g. Humphries et al. 2010; Sims et al. 2012). Theorists

have proposed a set of random search strategies that are

thought to be optimal under different conditions. While

simple Brownian motion may be sufficient in productive

areas, the L�evy walk may be advantageous in sparse envi-

ronments because its rare, extremely long steps enable

animals to explore new areas (Bartumeus et al. 2002;

Humphries et al. 2010; but see James, Plank & Edwards

2011; Benhamou & Collet 2015; Pyke 2015). Relative to

Brownian motion, the L�evy walk is increasingly efficient

with decreasing food density (Viswanathan et al. 1999;

Bartumeus et al. 2002). When food density is low, the

L�evy walk is also more efficient than a correlated random

walk (CRW) (Bartumeus et al. 2005). The CRW is a

search strategy characterized by nearly straight movement

that was shown to be efficient at finding sparsely dis-

tributed patches (Zollner & Lima 1999). The composite

correlated random walk (CCRW) is a two-behaviour

strategy that is more efficient than single-behaviour mod-

els in heterogeneous landscapes (Knoppien & Reddingius

1985; Benhamou 1992; Plank & James 2008; Benhamou &

Collet 2015). The ‘extensive’ phase of the CCRW uses the

nearly straight movement that makes the CRW efficient

at finding patches. The discovery of a food item triggers

the ‘intensive’ phase, which is characterized by slower,

more tortuous movement and sometimes referred to as

area-restricted search. These two behavioural phases allow

animals to adjust their movement according to local food

density and the intensive phase enables them to stay

within patches, even when patches have no perceptible

boundaries (Knoppien & Reddingius 1985; Benhamou

1992). Many environments are sparse, heterogeneous and

unpredictable. While Brownian motion and CRW might

be insufficient in these instances, both the L�evy and

CCRW may be advantageous random search strategies.

While the underlying searching behaviours of the L�evy

and CCRW strategies differ, their movement patterns are

similar and difficult to differentiate (Benhamou 2007;

Plank & Codling 2009; Auger-M�eth�e, Plank & Codling

2014). However, new methods have been developed to dis-

tinguish between the movement patterns associated with

these strategies (Plank, Auger-M�eth�e & Codling 2013;

Auger-M�eth�e et al. 2015). Here, we investigated the move-

ment of three mammals for evidence of patterns consis-

tent with random search strategies. As detailed below, we

chose these species because previous research or the nat-

ure of their environment suggests that they may use ran-

dom search strategies. All are large and wide-ranging

mammals inhabiting northern Canada. However, these

species vary widely in their foraging behaviours, allowing

us to contrast the movement behaviours of animals in dif-

ferent feeding guilds.

Our first study species is a large herbivore, the wood-

land caribou (Rangifer tarandus caribou). We studied them

in winter, when resources are scarce and they may be

more likely to use random search strategies (Adamczewski

et al. 1987; Parker, Barboza & Stephenson 2005). Their

movement was shown to be consistent with a two-beha-

viour model similar to the CCRW (Johnson et al. 2002b),

and a different subspecies was suggested to use the L�evy

strategy (M�arell, Ball & Hofgaard 2002). Thus, applying

these newly available tools may help clarify how caribou

search their environment.

Our second study organism is a large Arctic omnivore,

the barren-ground grizzly bear (Ursus arctos). Our study

population inhabits an area of low productivity, the

Mackenzie Delta, Northwest Territories, Canada

(McLoughlin et al. 1999). Unlike other grizzlies that rely

on predictable sources of protein, such as salmon (Oncor-

hynchus spp.), the barren-ground grizzlies of the Macken-

zie Delta have a small body size and drifting home ranges

(Hilderbrand et al. 1999; Edwards, Nagy & Derocher

2009). The benefits of familiarity are limited in scarce,

heterogeneous and unpredictable environments (Switzer

1993; Mueller & Fagan 2008); thus, site fidelity was sug-

gested to be maladaptive for these bears (Edwards, Nagy

& Derocher 2009). Thus, random search strategies may be

effective for barren-ground grizzlies, making these bears

good candidate for our study.

Our third species, the polar bear (Ursus maritimus), is a

specialized marine carnivore. Polar bears, like many other

predators that have been the focus of search strategy

studies, exploit the unpredictable marine environment

(e.g., Humphries et al. 2010, 2012; but see Regular, Hedd

& Montevecchi 2013). Polar bears exhibit site fidelity

(Mauritzen, Derocher & Wiig 2001), which could encour-

age the use of memory-based search strategies. However,

other species that exhibit site fidelity are also thought to

use random search strategies or a mixture of memory and
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random search strategies (e.g. Humphries et al. 2012;

Gautestad & Mysterud 2013). Polar bears use the sea ice

as a platform to hunt seals (Stirling & Derocher 2012).

Sea ice extent changes seasonally and local ice concentra-

tion can vary drastically over short time-scales (Maslanik

& Barry 1989; Johannessen et al. 2004), which may make

random search strategies advantageous.

Using data collected when these three species were

expected to be searching for food, we investigated whether

their movement patterns were consistent with one of these

four random search strategies. To do so, we compared

the relative fit of a set of models, each representing the

movement pattern of one of the search strategies. We then

assessed the absolute fit of the best model to verify

whether it described the observed movement well.

Materials and methods

modelling search strategies

We used the method described in Auger-M�eth�e et al. (2015) to

assess whether the movement patterns of three species were con-

sistent with a set of search strategies. This method defines likeli-

hood functions that model the movement pattern of each of the

four search strategies (Table 1), and can be considered a general-

ized and statistically rigorous extension of earlier methods. Each

likelihood function was applied to the time series of step lengths,

lt, and turning angles, ht, of each individual. The movement pat-

tern of L�evy strategy was represented by a truncated L�evy walk

(TLW), which used a truncated Pareto distribution for the step

length, w(l), and a circular uniform distribution for the turning

angle, v0(h) (Table 2). The movement pattern of the Brownian

motion was represented by a Brownian walk (BW), which used

an exponential distribution for the step length, φ(l), and a circu-

lar uniform distribution for the turning angle, v0(h) (Table 2).

The CRW also used an exponential distribution for the step

length, φ(l), but in combination with a von Mises distribution

centred at 0 for the turning angle, v(h) (Table 2). The CCRW

version from Auger-M�eth�e et al. (2015), which we refer to as

CCRWA, used a Hidden Markov model with two movement

behaviours (Table 1). The movement pattern of the intensive

phase was represented by a BW with exponential distribution for

the step length, φ(l), and a circular uniform distribution for the

turning angle, v0(h) (Table 2). The movement pattern of the

extensive phase was represented by a CRW with an exponential

distribution for the step length, φ(l), and a von Mises distribution

centred at 0 for the turning angle, v(h) (Table 2). As we suggested

in Auger-M�eth�e et al. (2015), we also explored an additional ver-

sion of the CCRW based on the Hidden semi-Markov model pre-

sented in Langrock et al. (2012), which we refer to as CCRWL.

For this version, we used the same step length and turning angle

distributions as in the CCRWA. However, the CCRWL used tran-

sition probabilities that depended on Poisson-distributed state

dwell times rather than the fixed transition probabilities used in

the CCRWA (Table 2).

We used maximum-likelihood estimation to estimate the param-

eters of each model and the likelihood profile to estimate their con-

fidence intervals (Bolker 2008). To identify the model that best fit

the movement data of each individual, the relative fit of these likeli-

hood functions was assessed using the second-order Akaike

Information Criterion (AICc) and Akaike weights (Burnham &

Anderson 2002). Because the CCRWA and CCRWL were two

models representing the movement pattern of the same search

strategy, we summed their Akaike weights (wCCRW =

wCCRWA
þ wCCRWL

). We evaluated whether the best model ade-

quately explained the movement data using a test of absolute fit,

which consisted of a G-test on uniform pseudo-residuals (Sokal &

Rohlf 1981; Zucchini & MacDonald 2009; Auger-M�eth�e et al.

2015). All analyses were completed in R (R Core Team 2015), and

the code used to complete the analyses is available on GITHUB

(https://github.com/MarieAugerMethe/CCRWvsLW/tree/v2.0).

See Auger-M�eth�e et al. (2015) for more detail.

description of movement data

We used the movement data of three northern mammal species

(data available on the University of Alberta Education &

Research Archive: https://era.library.ualberta.ca/). To capture

rare events, such as the long steps characteristic of the L�evy walk,

we attempted to get time series representing close to a year of

movement behaviour. However, we also tried to limit the time

series to movement performed while searching. As detailed below,

we removed all sections of the data sets known to be associated

with reproduction and resting, as the changes in movement pat-

terns associated with such behaviours could affect our analyses

(e.g. DeMars et al. 2013). We also started each time series a mini-

mum of 2 weeks after the collaring event because capturing pro-

cedures associated with collaring affect the movement of some

species (e.g., Morellet et al. 2009; Thiemann et al. 2013). The

time series of some individuals were further reduced by missing

observations and collar failures.

The first data set included the movement paths of 22 female

caribou from the boreal plains region of north-eastern British

Columbia, Canada. These females were captured during February

and March 2011 and fitted with G2110E collars from Advanced

Telemetry Systems Inc. (Isanti, MN, USA). The collars provided

daily Global Positioning System (GPS) locations. We removed

the calving and rut periods, as well as the 2 weeks post-collaring,

by limiting the time series to locations collected between 1

November 2011 and 30 April 2012 (Ferguson & Elkie 2004). The

second data set included the movement paths of 20 grizzly bears

from the Mackenzie Delta, Northwest Territories, Canada. These

bears were collared in May and June (close to den emergence)

2003–2009. For each individual, we used locations collected dur-

ing the first year after collaring, in the period between 1 July and

30 November (or den entrance). Starting 1 July excluded the peak

of the mating season (MacHutchon 1996) and the 2 weeks fol-

lowing the collaring events. The third data set included the move-

ment paths of 12 polar bears from the Beaufort Sea. These bears

were collared in April and May 2008–2010. To exclude the

2 weeks after collaring, we started the time series 1 June. We

used locations collected until the subsequent 1 June. As some

pregnant females of the Beaufort Sea give birth in dens on the

moving sea ice (Amstrup & Gardner 1994), it is difficult to iden-

tify den location. To exclude denning individuals, we included

only juveniles and females accompanied with cubs-of-the-year or

yearlings when collared. Restricting the analysis to these individu-

als also removed the potential for mating events in the time ser-

ies. The locations of both the grizzly and polar bears are GPS

locations taken every 4 h with Gen II–IV collars from Telonics

Inc. (Mesa, AZ, USA).
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The collars of all of these animals were programmed to collect

locations at regular time intervals. Transforming sampled steps

into biologically relevant steps is among the most difficult chal-

lenges of using GPS data in ecology (Hebblewhite & Haydon

2010), and various methods have been proposed (e.g. Codling &

Plank 2011). We chose to use the local turn method, a technique

that creates one step out of all consecutive sampled steps with a

turning angle smaller than a threshold angle (see Codling &

Plank 2011; Auger-M�eth�e et al. 2015). This technique, as well as

other similar methods, can cause the misidentification of CCRWs

for L�evy walks (Codling & Plank 2011; Plank, Auger-M�eth�e &

Codling 2013). However, misidentifications are more likely to

occur when high threshold angles are used (Codling & Plank

2011; Plank, Auger-M�eth�e & Codling 2013). We chose a thresh-

old angle of 10° because this small value limited the potential for

misidentification and interpreted movement in the same general

direction (i.e. any sampled step within the 20° forward sector) as

part of a biologically relevant step (Auger-M�eth�e et al. 2015). To

verify that variations in threshold angles did not affect the

results, we also explored a range of threshold angles. We show in

Appendix S1 (Supporting information) that the results were

broadly similar regardless of the threshold angle used. Note that

this local turn method can impact the test of absolute fit based

on turning angle distribution (Auger-M�eth�e et al. 2015), and we

presented only the test of absolute fit for the step length distribu-

tion. Because missing locations can affect steps defined by the

local turn method, we included only individuals that had a time

series with <30% of the locations missing. We also limited the

time series to those with a minimum of 50 steps (Appendix S2

presents the range of sample size). We applied the models to the

data from each individual separately.

Results

According to AICc, one of the CCRWs (CCRWA or

CCRWL) was the best model for more than 98% (53/54) of

all movement paths and for at least 95% of the movement

paths of each species (Table 3). For all species, the mean

Akaike weight, wCCRW, of paths with a CCRW as best

model was >0�94. According to the test of absolute fit, some

of the movement paths best described by a CCRW were

not different from it: 48% of caribou, 25% of grizzlies and

0% of polar bears (Table 3). While the TLW and CRW

were never the best model of a movement path, the BW was

the best model for one of the 22 movement paths of the

caribou. The mean Akaike weight of this BW was 0�42 and

this path was different from the BW. For a visual represen-

tation of the fit of the models, see Fig. 1, and for the results

for each individual, see Appendix S2.

For comparative purposes, we also present the results

when the CCRWA, CCRWL and CRW are excluded from

the analysis and only the TLW and BW are considered as

alternative hypotheses. Both the TLW and BW have a

uniform probability density function to describe the turn-

ing angle frequency, and the same step length probability

density functions as in Edwards et al. (2007). Thus, com-

paring the AICc of these two models can be considered

equivalent to current methods used by others to find evi-

dence for the L�evy walk. The TLW was better than the

BW for 75% of the grizzly bears and 8% of polar bears

(Table 4). The rest of the movement paths, including all

caribou paths, were better described by the BW. While

the BW was sufficient to explain the movement of half of

the caribou and one grizzly bear, it was insufficient for all

polar bears. All movement paths were different from the

TLW according to the test of absolute fit.

Table 3. Relative and absolute fit of the five models on the movement paths of 22 caribou, 20 grizzlies and 12 polar bears. For each

model, we present the number of movement paths selected as best model with AICc and the mean Akaike weight, w, of these selected

paths. Note that we used the summed Akaike weight of the CCRWA and CCRWL because these two models represent the movement

pattern of the same search strategy. We also present how many of the selected paths are not different from the best model according to

a test of absolute fit based on the step length distribution

Model

N° as best model w of best model N° P-value > 0�05

Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

CCRWA 4 15 9
0�95 1�00 1�00 1 1 0

CCRWL 17 5 3 9 4 0

TLW 0 0 0 – – – – – –
BW 1 0 0 0�42 – – 0 – –
CRW 0 0 0 – – – – – –

BW, Brownian walk; CCRW, composite correlated random walk; CRW, correlated random walk; TLW, truncated L�evy walk.

Table 2. Formulas for the probability density functions (PDFs)

used in the models and the restrictions on their variables and

parameters. The variables l and h represent step length and turn-

ing angle, respectively

Distribution Symbol PDF Restrictions

Exponential /(l|k, a) k e�kðl�aÞ a ≤ l, k > 0

Truncated

Pareto

wT(l|lT, a, b)
ðlT�1Þ l�lT

a1�lT�b1�lT
a ≤ l ≤ ba

Von Mises v(h|j) 1R p

�p
ej cosðhÞdh

ej cosðhÞb,c j > 0

Uniform v0(h) 1
2p

Poisson p(r|a) ar
r! e

�a a > 0

aUnlike in Auger-M�eth�e et al. (2015), we are not placing restric-

tions on the estimated lT values.
bThis is a simplified and expanded equation of the von Mises

PDF. The same equation is often written with a modified Bessel

function of the first kind and of order 0.
cThese simplified versions assume that the distribution is centred

at 0; for full version, see Codling, Plank & Benhamou (2008).
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Many of the parameter estimates for the CCRWs

(CCRWA or CCRWL) indicated that the movement paths

could be divided into two distinct phases (Table 5). First,

the mean step length of the intensive phase was shorter

than that of the extensive phase for all species (kI > kE;
note that 1/k + a represents the mean). Secondly, the

extensive phase for the grizzly and polar bears had more

directed movement than the intensive phase (jE > 0).

However, we had weaker support for caribou, as the

mean confidence interval for the scale parameter, jE,
overlapped with 0. A scale parameter, jE, of 0 reduces

the von Mises distribution to the same circular uniform

distribution used for the intensive phase. In addition, the

caribou, the 15 grizzly bears with the CCRWA as their

best model, and the polar bears appeared to remain in the

intensive phase for multiple steps. When modelled with

the CCRWA, these animals had a >50% chance of

remaining in the intensive phase (cII > 0�5). When
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Fig. 1. Fit of the models on the movement path of each species: (a–c) caribou, (d–f) grizzly and (g–i) polar bear. (a, d, g) Black lines

represent the movement path using the 10° threshold angle and the grey dashed line the missing data. (b, e, h) Step length frequency

with the probability density function (PDF) of each model, on log–log axes. (c, f, i) Turning angle frequency with the PDF of each

model. The best model for these three individuals was either the CCRWA or CCRWL with Akaike weight: wCCRW > 0.99. The P-value

of the test of absolute fit for the step length and turning angle distributions of the best model are indicated in the legend. See

Appendix S2 for the other individuals. CCRW, composite correlated random walk.
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modelled with the CCRWL, they spent on average more

than one step in the intensive phase (aI > 1). However, we

had weaker support for such behavioural persistence for

the five grizzly bears with the CCRWL as their best model

because their mean number of steps in the intensive

phase, aI, was only 0�28.

Discussion

We found substantial support for the two versions of the

CCRW. 98% of the movement paths had one of these

CCRWs as best model. Of these movement paths, 28%

were adequately described by the best CCRW version. In

general, the estimated parameters from the CCRWs indi-

cated that the movement patterns could be divided into

two distinct movement behaviours, a directed extensive

phase and a tortuous intensive phase, consistent with an

area-restricted search. However, not all movement paths

were consistent with a CCRW. According to the test of

absolute fit, the movement paths of many caribou, grizzly

bears and most polar bears were different from the best

CCRW version, even though one of the CCRWs was, in

almost all of these cases, the best model according to

AICc. In addition, the confidence intervals on some

parameter estimates indicated that the evidence for direc-

ted movement and behavioural persistence in the intensive

phase was not strong for some species. These discrepan-

cies indicate that although our versions of the CCRW can

approximate the movement better than the three other

models we investigated, it might be an incomplete repre-

sentation of the search strategy used by some of the ani-

mals we studied.

We found no movement patterns consistent with the

L�evy strategy, which is in line with recent studies suggest-

ing that L�evy movement may be less common than origi-

nally thought (Edwards et al. 2007, 2012; James, Plank &

Edwards 2011; Pyke 2015; but see Humphries et al. 2012;

Sims et al. 2012; Gautestad & Mysterud 2013). Although

no movement paths had the TLW as its best model when

all models were considered, support for the TLW

increased when the CCRWs were excluded from the set of

alternative models. When the TLW was compared only to

the BW, 75% of the grizzly bears and one polar bear had

the TLW as their best model. This re-emphasizes the

importance of comparing L�evy walk models to strong

alternatives such as the CCRW (Auger-M�eth�e et al. 2011;

Jansen, Mashanova & Petrovskii 2012; Plank, Auger-

M�eth�e & Codling 2013). It also supports the contention

that some L�evy walk movement patterns might emerge

from multiphasic movement or other mechanisms rather

than providing evidence for the L�evy search strategy per

se (Benhamou 2007; Plank & James 2008; Breed, Severns

& Edwards 2015; Reynolds 2015). Finally, the fact that

all empirical movement paths differed from the TLW fur-

ther indicates that it was likely an inappropriate model

for our data. This reiterates the importance of testing the

Table 4. Relative and absolute fit of the two models generally used in L�evy walk analysis. For each model, we present the number of

movement paths selected as best model with AICc and the mean Akaike weight of these selected paths. We also present how many of

the overall paths are not statistically different from the TLW and BW when only the step lengths are considered

Model

N° as best model w of best model N° P-value > 0�05

Caribou Grizzly Polar bear Caribou Grizzly Polar bear Caribou Grizzly Polar bear

TLW 0 15 1 – 1�00 1�00 0 0 0

BW 22 5 11 1�00 0�93 1�00 11 1 0

BW, Brownian walk; TLW, truncated L�evy walk.

Table 5. Parameter estimates for the best models. The mean parameter estimates and associated confidence intervals (CIs) are presented

for each species. Only the movement paths of individuals that had the model as its best are used. The locations of caribou were taken

daily, and those of grizzly and polar bears were taken every 4 h

Symbol (unit) Description Caribou Grizzly Polar bear

a (km) Minimum step length of the BW, CCRWA and CCRWL 0�053 0�0030 0�023
cII Probability of remaining in the CCRWA’s intensive phase 1�00 (0�98–1�00) 0�54 (0�44–0�64) 0�83 (0�78–0�88)
cEE Probability of remaining in the CCRWA’s extensive phase 0�97 (0�89–1�00) 0�85 (0�80–0�90) 0�96 (0�96–0�97)
jE Scale parameter of the directional correlation of the

CCRWs’ extensive phase

0�22 (0�00–1�14) 0�41 (0�22–0�62) 1�1 (1�0–1�3)

k (km�1) Rate parameter of the exponential distribution of the BW 0�43 (0�36–0�50) – –
kI (km

�1) Rate parameter of the CCRWs’ intensive phase 7�7 (1�2–18�1) 53 (35–82) 16 (13–21)
kE (km�1) Rate parameter of the CCRWs’ extensive phase 0�37 (0�25–0�54) 0�56 (0�49–0�63) 0�19 (0�18–0�21)
aI Mean of the Poisson for CCRWL’s intensive phase 15 (10–19) 0�28 (0�13–0�53) 13 (9–16)
aE Mean of the Poisson for CCRWL’s extensive phase 14 (9–19) 4�0 (3�3–5�2) 17 (15–19)

BW, Brownian walk; CCRW, composite correlated random walk.
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absolute fit of a model (Auger-M�eth�e et al. 2011; Plank,

Auger-M�eth�e & Codling 2013).

The fact that we found support for CCRWs is unsur-

prising given that there is ample evidence of species show-

ing similar biphasic movement behaviour (e.g. Morales

et al. 2004; Jonsen, Myers & James 2007; Dragon et al.

2012), including caribou (Johnson et al. 2002a, b; Tyson,

Wilson & Lane 2011). However, our results contrast with

previous research on semi-domesticated reindeer

(R. t. tarandus), a Eurasian subspecies of caribou. We

found that CCRWs and the two null models were better

than the TLW for the winter movement of all caribou

(Appendix S2). In contrast, previous studies found that

the movement of reindeer in spring and early summer was

more consistent with the L�evy walk than with null models

(M�arell, Ball & Hofgaard 2002; Edwards 2011). These dif-

ferences might be due to behavioural variation between

subspecies or between wild and semi-domesticated ani-

mals. They may also result from differences in the sam-

pling scale, habitat and season examined in the studies.

M�arell, Ball & Hofgaard (2002) showed that reindeer

changed their movement strategies over the course of the

summer. For caribou, Johnson et al. (2002a) showed

stronger support for a two-behaviour model in winter

than in summer and attributed the difference to increased

patch heterogeneity due to snow conditions and lichen

distributions. Thus, it is possible that caribou exhibit

CCRW movement patterns in winter but not during the

summer.

Unlike grizzlies and polar bears, one caribou had the

BW as their best model. In addition, many caribou move-

ment paths were not statistically different from the BW

and the parameter estimates indicated that the distinction

between the two behaviours of CCRWs was not strong.

Our caribou movement paths had the coarsest sampling

scale and the smallest sample sizes (see Appendix S2).

This sampling scheme may have favoured finding evidence

for a simpler model in this species, and the small sample

size might have contributed to the relatively low rate of

rejection for caribou. However, Edwards (2011) also

found that null models similar to the BW explained the

movement of this species during part of the year, support-

ing our results that the BW is sufficient to explain the

movement of some caribou. A single-behaviour search

strategy may be sufficient for large herbivores, which

often rely on widely dispersed low-quality food rather

than patches of highly nutritional items (Senft et al.

1987).

Composite correlated random walks were the best

model for all grizzlies and were sufficient to explain the

movement paths of some individuals. We anticipated

movement patterns consistent with a random search strat-

egy because the bears in this population inhabit sparse

and unpredictable environments and display home range

drift (Edwards, Nagy & Derocher 2009). Bears in this

population vary in their foraging behaviours from a spec-

trum of near complete herbivory to carnivory (Edwards

et al. 2011). Such specialization was related to changes in

movement behaviours, with carnivores moving faster than

herbivores (Edwards et al. 2011). Indeed, we would expect

carnivores and herbivores to use different search strate-

gies, and such individual variation might explain why the

movement of only some individuals is adequately repre-

sented by CCRWs. We might expect the intensive move-

ment associated with the area-restricted search to be more

effective for the herbivorous bears exploiting immobile

berry patches than for carnivores preying on vagile ani-

mals. Further research could investigate how differences

in diet are reflected in the search strategies used by griz-

zlies.

Composite correlated random walks were the best

model for all polar bears, but were insufficient to explain

the movement paths of all individuals. The parameter esti-

mates indicate that there is a strong differentiation in

both step length and directional persistence between the

behavioural phases, suggesting that there is evidence for

two movement phases even though the movement is not

adequately described by the CCRWs. Difference in these

phases could be driven by a variety of factors, including

alterations in movement according to sea ice condition.

Since the movement behaviour of polar bears is associated

with the high levels of sea ice drift they experience (Mau-

ritzen et al. 2003; Auger-M�eth�e, Lewis & Derocher 2016),

neglecting sea ice drift may partially explain why our

models were insufficient to explain their movement.

Although studies have found movement consistent with

random search strategies in animals experiencing drift

from ocean and wind currents (e.g. Fauchald & Tveraa

2003; Humphries et al. 2012; Sims et al. 2012), neglecting

currents can distort inference made from foraging move-

ment models (Gaspar et al. 2006). This distortion may be

attributed to the difficulty of distinguishing between vol-

untary movement and drift, but it may also arise from the

fact that many species use currents strategically when

travelling (e.g. Weimerskirch et al. 2000).

The test of absolute fit revealed that the models we

explored failed to accurately represent 72% of the move-

ment paths. There are multiple potential reasons for the

high rejection rate of this test, the first three of which are

methodological in nature. First, animals are unlikely to

move exactly as modelled by our idealized representation

of search strategies, and with large sample sizes, any small

deviation could result in rejection. While we explored two

CCRW versions that differed in how we modelled the

number of steps made in a movement phase, varying step

length and turning angle distributions can further increase

the absolute fit of the CCRWs (see Appendix S3). Sec-

ondly, although the models are good representations of a

movement path composed of biologically relevant steps,

they are not necessarily good representations of observed

movement. To estimate biologically relevant steps from

sampled steps, we used the local turn method. Such pro-

cedures can distort movement paths and bias results in

favour of L�evy walk models (Codling & Plank 2011;
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Plank, Auger-M�eth�e & Codling 2013). In particular, the

test of absolute fit we used has a slightly inflated rejection

rate when a 10° local turn threshold is used (Auger-M�eth�e

et al. 2015). However, the method’s ability to distinguish

between the CCRW and TLW is robust to use of a 10°
threshold (Auger-M�eth�e et al. 2015), and we found consis-

tent results over a range of threshold angles. The only

noteworthy exceptions are that up to three grizzly bear

movement paths had the TLW as best model when high

threshold angles were used (e.g. 40°) and that when a

threshold angle of 50° was used one grizzly bear move-

ment path with a TLW as best model was not statistically

different from it (see Appendix S1). Thirdly, sampling

scale can affect the observed movement pattern and thus

behavioural inference (e.g. Codling & Hill 2005; Andersen

et al. 2008; Plank & Codling 2009). The data we used

were sampled at a coarse temporal scale (daily for caribou

or every 4 h for bears). Thus, investigating movement

paths with locations taken at a more frequent interval

could potentially increase the absolute fit of CCRWs.

However, we showed previously that for polar bears,

movement paths with locations taken every 30 min gave

similar results: the CCRWA was better than the TLW,

BW and CRW, but was insufficient to explain the

observed movement (Auger-M�eth�e et al. 2015). Across

sampling scales and species, we generally found stronger

support for CCRWs compared to the BW and CRW, but

in some cases these simpler models were favoured or had

strong enough support to be kept as potential alternatives

(see also Auger-M�eth�e et al. 2015). In contrast, the stron-

ger support for CCRWs over the TLW was constant

across the three species studied and the three different

sampling scales (locations taken every 30 min, 4 h,

1 day), indicating that this finding is relatively robust to

sampling scale.

In addition to these methodological reasons, there are

at least four potential biological reasons for the lack of fit

of these movement models. First, the L�evy walk and the

area-restricted search strategy associated with CCRWs

were developed for animals with scant knowledge of their

environment (Knoppien & Reddingius 1985; James, Plank

& Edwards 2011). Species like the caribou and polar bears

exhibit some degree of site fidelity (Mauritzen, Derocher

& Wiig 2001; Faille et al. 2010; Tracz et al. 2010); thus,

we can expect them to be at least moderately familiar

with their environment. As many species display site fide-

lity and are capable of storing information on their habi-

tat, there is increasing interest in memory-based

movement models (B€orger, Dalziel & Fryxell 2008;

Smouse et al. 2010; Fagan et al. 2013). Ignoring memory

may distort analyses of random search strategies (Gautes-

tad & Mysterud 2013), and some memory-based search

strategies have similar movement patterns to CCRWs

with area-restricted search (e.g. Fronhofer, Hovestadt &

Poethke 2013). Thus, accounting for memory in move-

ment analysis may help understand the search strategies

used by animals with knowledge of their environment

(e.g. Regular, Hedd & Montevecchi 2013). Secondly, ran-

dom search strategies were developed for animal searching

outside of their perceptual range (Benhamou 1992; James,

Plank & Edwards 2011). Many species have an acute

sense of smell and are thought to use olfactory cues to

find their prey (Conover 2007). Such species include the

grizzly and polar bear (Stirling 1999; Conover 2007), as

well as species that have been suggested to follow a ran-

dom search strategy (e.g. wandering albatross, Diomedea

exulans, Nevitt, Losekoot & Weimerskirch 2008; Humph-

ries et al. 2012). As with knowledge of the environment,

the use of sensory cues and the extent of the perceptual

range are likely to affect the type of search strategies used

by animals (Nevitt, Losekoot & Weimerskirch 2008;

Fronhofer, Hovestadt & Poethke 2013). Thirdly, land-

scape features can alter animal movement patterns and

affect their search strategy. In particular, ignoring

resource density levels can distort analysis of random

search strategies (Gautestad & Mysterud 2013), and

including landscape features in movement models can

enhance our understanding of animals’ foraging success

(McKenzie et al. 2012). Fourthly, animals have an exten-

sive behavioural repertoire and their movement paths

often include behaviours other than searching for food.

Neglecting to remove other behaviours is known to dis-

tort analysis of search strategies (Edwards et al. 2007).

We removed two types of resting periods, the denning

period of bears and all steps where locations remained

constant. In addition, we removed the main reproductive

and mating periods of all species. However, given that

our sampling interval was coarse and that the movement

paths encompassed months, it is likely that many beha-

viours, including nursing, predator avoidance and socializ-

ing, are still present in the movement paths. These four

explanations for the lack of fit of simple movement mod-

els emphasize how difficult it is to understand how ani-

mals search for food, and echo the calls for more

mechanistic movement models (Nathan et al. 2008; Schick

et al. 2008).

While we have movement patterns consistent with

CCRWs and Brownian motion, there is likely no univer-

sal search strategy. Both species and individuals differ.

Thus, we will only be able to accurately represent how

animals search for food once we incorporate into move-

ment models aspects such as memory, landscape features

and the effects of sampling on observed movement paths.
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